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Variational trial functions in quantum theory 
11. Continuous spectrum 

T L JOHN? *and K L WILLIAMS1 
t Department of Applied Mathematics and Mathematical Physics, University College. 
Cardiff, UK 
$ Computing Centre, IJniversity College, Cardiff, UK 

MS received 6 January 1972, in revised form 4 February 1972 

Abstract. A method given in the previous paper for the calculation of variational trial 
functions is applied to the continuous spectra of some simple one and two particle systems. 

1. Introduction 

In a previous paper (John and Williams 1972, referred to as I) we presented a method for 
determining variational trial functions and applied them to the calculation of the ground 
state of one and two particle systems. In the present paper, we describe applications of 
these trial functions to the continuous spectrum of similar systems. We also discuss and 
compare this method with the variation-iteration methods of McEachran et a1 (1965) 
and Kraidy and Fraser (1966). As the main purpose of the paper is to discuss and assess 
the usefulness of the method, all applications are restricted to simple systems and 
approximations where exact solutions are readily available in the literature ; thus no new 
results are presented. 

2. Trial functions for one particle systems 

As described in I, trial functions for a particle of momentum k and orbital angular 
momentum I scattered by the central field potential U(r) ,  where rU(r)  + 0 as r -, 00, are 
defined as follows : 

type 1 
N' 
k fKk21r) = - cos rl j&) - Gl(kzlx,  r)U(x)$(x)  dx 

type 2 (iterated functions) 

N ( n ) I  

fjn"(k21r) = - cos qij l (kr)-  Gf(k21x, r ) U ( x ) f j n -  ')'(k21x) dx n 2 l  
k (2) 

1165 
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where $ is the phase shift parameter and N a normalizing factor?, which will be defined 
later. The free electron Green function is given by 

and the functions j,(x) and nl(x) can be expressed in terms of the Bessel functions 

j ix )  5 (3.x)' 2J1++(x) 

nl(xj = ( -  l)1(~nx)''2J-f-+(x). 
(4) 

The functions Cp(x) and Jjo"(k21x) will in general depend on a set of parameters ci 
(i = 1.. . . , m). In most applications, the trial functions are usually taken to be linear 
functions of the parameters so that computations are reduced to evaluating the appro- 
priate variational integrals and solving sets of simultaneous equations. The general form 
for 6 orfI0)' we shall take to be 

1 = 1  

These trial functions are suitable for applications in Schwinger's method (see Blatt 
and Jackson 1949) and Hulthen-Kohn methods. The Hulthen-Kohn methods can be 
classified according to the normalizing factor N ' ,  for N' = secq;, we have 'tangent' 
methods, for example, the methods of Kohn (1948) Hulthen (1944) 1st method and 
Malik (1962), and for N' = k cosec qi we have 'cotangent' methods, for example, the 2nd 
method of Hulthen (1948). For a recent account of these and alternative methods see 
John (1967). 

For 'tangent' methods, using Cp defined by equation (5) the trial functions have the 
asymptotic forms 

where 

s( = --  ! U(x)jl(kx)ui(x) dx i = 0, 1 , .  . . . 1 n  
0 

Substituting f'i(k21rj into the variational integral 

gives the condition 

I,+@,+ f ci.ij = 0. 
i =  1 

( 7 )  

(9) 

t This choice of normalization factor N enables calculations of the scattering length to be made by taking 
the limit k + 0. 
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Following John (1967), we have alternative methods of solution depending on the 
choice of m of the m + 2 equations used to calculate the parameters 

L = O  

m 1 r m  

a. + ciai = - A J U(x)jl(kx)fl(k21x) dx 
i =  1 k o  

and 
1 m 
A tan q1 = U,+ 1 c i c r i + ~  
k i =  1 

to calculate the phase shift. 

type 1. For n # l,f{"-')' appearing in the integral part of equation ( 2 )  is of the form 
The results for iterated type 2 functions with n = 1 are identical to those given by 

and the equivalent expression to (9) is 

where 

U{") = - JOE U(x)jf(kx)uin)(x) dx i = O , l ,  . . . ,  m. 

The functions U{") can be obtained from the recurrence relation 
1 r m  

u{")(r) = Ajf(kr)6i,, - J Gl(kzlx, r)U(x)ui"- ')(x) dx 
k 0 

ul"(x) = Ui(X). 

The equations corresponding to (10) and (1 1) in this case are 

L = O  

m 1 rcc 

and 

The asymptotic form of type 1 trial functions for 'cotangent' methods is 

fl(k21r) - cot vIj,(kr)+ 
i =  1 r - c c  
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thus it is necessary to impose the condition 
m 

go+ c ix ;  = 1 
i =  1 

on the parameters in order to satisfy the boundary condition. We shall assume that c,, 
can be expressed in terms of the other c thusfi will now depend on the m parameters 
(cot q ) ,  c 1 , .  . , , c,- The variational condition in this case is 

b(L-kcotqi) = 0 (20) 

giving rise to alternative methods by choosing m of the m + 2 equations 

L = O  

SL 
Z(k cot vi) = 

1 
- 1 = Jox U(x)jl(kx)fi(k21x) dx. 

The equation 

defines the phase shift. 

3. The variation-iteration method 

The variation-iteration method of McEachran et a1 and Kraidy and Fraser bears some 
similarity to the method discussed here. In the variation-iteration method, a set of 
functions FP)(k'lr)  is obtained from the integral equation 

for 'tangent' methods, and 

N(")  = k cosec q1") 

Fjo)(k21r) = cot qjo)jl(kr)+(l -e-')"+'ql(kr) 

for 'cotangent methods'. q!") is given by 

loE V(x)j , (kx)F{")(k21x)  dx = -tan qj"' (tangent methods) 

= - 1 (cotangent methods). 
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One parameter trial functions are defined as follows 

fj(k21r) = pBi")( kZI r )  + ( 1  - p ) 9 { " -  l)(k2lr) 

fi(kzlr) = q9;I"'(kzlr)+(l - q ) B j l ) ( k z l r )  

where p and q are parameters calculated by the equations 

_ -  - 0  
i?L 

- 0  or 
a L  
aP z q  
_ -  

and the phase shift by 

tan qI = tan qj") + k L  

In applications these methods were compared with the Born iteration procedure, 
that is, solving equation (23) using equations (24) and a similar procedure with the 
cotangent normalization. The variation-iteration method in this context can be 
thought of as a way of speeding up the convergence of the Born method. However, there 
are certain drawbacks; firstly convergence is not always possible and secondly the 
computations involved in the iterations can be considerable especially when a large 
number of iterations are needed. In calculating the phase shifts for the elastic scattering 
of electrons by hydrogen atoms, when convergence was possible, it took from 3 to 16 
iterations depending on the approximation for the wavefunction, the normalization, 
energy, spin and orbital angular momentum. 

4. Applications to simple potentials 

To illustrate the method described in 42 we have chosen the cases of the scattering 
lengthst A ,  for the exponential potential 

and the square well potential 

U ( r )  = - UO O < r Q r o  

= o  r > ro 

and the s wave phase shift for the square well potential (31). If we make a change of 
variable r' = r/ro and define U ;  = U & ,  then all cases, exact and variational are covered 
taking ro = 1 and U ,  = U ; .  

t Note for the scattering length we have the limiting cases jo (kr) /k  -P r ,  n,(kr) + 1, &/k  + Ab and 

Go(k21x, r) -P x (0 < x < r) 
- - tr  D < x <  a) 

as k + 0. 
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For the exponential potential the scaled scattering length Aop0 is given by 

where x, = ro(Uo)liz,  y is Euler's constant (y = 0.5772. . .) and Jo(x) and Y,(x) are zero 
order Bessel functions. For the square well potential the scaled scattering length is given 
by the well known formula 

A ,  tan x, 
I'o xo 

1. _ -  

For the scattering length calculations, we have chosen $ and f bo" as follows 

one parameter 

two parameter 

( 3 3 )  

For type 2 functions, calculations were restricted to one parameter functions and one 
iteration, that is, the function fb"'(0lr). The results for the exponential potential are 
given in table 1 ; they are in good agreement with the exact solution. 

For the square well potential, because of the boundary conditions the wavefunction 
has to satisfy at r = r , ,  cz = c1, that is, (35) becomes identical to (34). Results using 
this function and a two parameter type 1 trial function with 4 defined by 

f$(x) = C1X + czxz (36) 

are given in table 2. 
The s wave phase shift for the square well potential is given by the equation 

tan(kro + q,) tan K =- 
kr, K (37) 

where K 2  = ri( U ,  + k'). If we make K a constant we can cover all cases by varying k r ,  . 
We can judge the accuracy of any approximate solution by the deviation of the left hand 
side of equation (37) from a constant value. The corresponding type 1 trial function in 
this case is defined by 

$(x) = c1 sin k x .  (38) 

The variational values of tan(kr, + qo)/kro are given in table 3 for a number of values of 
K ; these hardly deviate from a constant value. For K = 2.5 the Kohn method yields a 
singular behaviour because the coefficient of one of the terms in the variational integral 
L is zero. 
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Table 3. tan(kro + qo)/kro for the square well potential calculated with type 1 trial functions 
and o(x) = c1 sin kx.  H1 Hulthen’s 1st method; H2 Hulthen’s 2nd method; KN Kohn’s 
method 

K 0.1 1 .o 1.4 2.5 

Exact 

U o / ( U 0 + k 2 )  
0.2 
0.3 
0.35 
0.3807 
0.3808 
0.4 
0.6 
0.7 
0.8 
0.9 

~ ~~~ 

1.003 1.557 4.141 

H1 H2 K N  H1 H2 K N  H1 H2 KN 
4.141 4.141 4.141 

- - - 
- - - 1.003t 1,557t 
4,141 4,141 4.141 
4,140 4.140 4.140 
4.139 4,139 4,139 
4,137 4,137 4.137 
4.135 4.134 4.135 

H1 
- 0.299 
- 0,299 
- 0.299 
-0.300 
- 0.300 
- 0.300 
- 0.302 
- 0.305 
- 0.308 
-0.312 

- 0,299 

H2 
- 0.299 
- 0.299 
- 0.299 
-0,300 
- 0.300 
-0.300 
-0.303 
- 0.307 
-0.311 
-0.316 

KN 
- 0.299 
- 0,301 
- 0,305 
- 3,868 

5.724 
-0.287 
-0.301 
-0.304 
- 0.309 
-0.314 

t The variational methods for these cases give the same value to within an accuracy of 4 
significant figures. 

5. Electron-hydrogen exchange approximation scattering lengths 

The equivalent integral equations to (1) and (2) for two electron systems, such as an 
electron in the field of a hydrogen atom, present a number of practical difficulties in 
calculations. As discussed in I, these difficulties are mainly due to the complicated 
expressions for the two particle Green functions. A way of avoiding these difficulties so 
that the wavefunction can be expressed in terms of one particle Green functions is to 
use the close coupling approximation for the wavefunction. 

Adopting this method to calculate the scattering length for electron-hydrogen 
scattering in the exchange approximation (one of the simplest forms of the close coupling 
approximation) we have to solve the integro-differential equation 

{$+2(l+k)  e-’.)f*(r) = +2P(r)  [ -- iJ: P(x)f*(x)dx 

+ r - l  Ji P(x)f*(x)dx+ im P(x)f’(x)x-’ dx (39) 

where P(x) = 2x e-x and the + and - signs refer to the singlet and triplet wavefunctions. 
1 

The type 1 trial functions in this case are given by 

+ x-  ‘lox P(x’)+(x’) dx’ + lxm P(x’)~(x’)x’- dx’)} dx. (40) 

The iterated type 2 functions can be obtained by putting 4 = f*‘ in the right hand side 
of equation (40). The scattering lengths are given in table 4, where 4 is given by (34) and 
(35). Results for the central field approximation which takes no account of the electron 
spin are also included; this case corresponds to P(x) = 0 in equations (39) and (40). The 
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Table 4. Electron-hydrogen scattering lengths 

Approximation Central field Exchange Exchange 
singlet case triplet case 

Trial Number of Method 
function parameters 

Numerical 
Kohn 

Type I t  One Hulthen 1 
Hulthen 2 
Schwinger 

Kohn 
Hulthen 1 

Typel: Two Hulthen 2 
Method I§ 
Method 25 

Kohn 
Type2t  One Hulthen 1 

Hulthen 2 

9 4 5  
7.77 
7.68 
7.25 
9.3 1 

9.25 
9.24 
9.21 
9.24 
9.18 

9.3 1 
9.31 
9.25 

- 8.10 
- 8.26 
- 8.25 
- 8.26 
-8.17 

- 8.25 
- 8.25 
- 8.25 
- 8.25 
- 8.25 

- 8.1 1 
-8.11 
- 8.1 1 

- 2.35 
-2 .35  
-2.35 
-?,35 
- 2.35 

- 2.35 
-1.35 
-1 .35  
- 7.35 
- 2.32 

-2.35 
- 2.35 
-2.35 

t 44x1 = c1x. 
$ &x) = c , x  
5 These methods are described by John (1967). 

0 6 x 6 r ,  +(x) = c 2 x  r < s < 5. 

one parameter calculations in the central field and symmetric case of the exchange 
approximation are not very accurate. There is some improvement using the two 
parameter functions, especially in the central field approximation. The iterated type 2 
functions give the best results. 

To improve accuracy we used 

&x) = c,x+c,(l -e-2x). (41 1 
We considered two cases, the two parameter function given by equation (41) and the 
one parameter function obtained by putting c1 = 1 in equation (41); these results are 
given in table 5. 

One of the most sensitive tests of trial functions for the particular cases considered 
here is the exchange approximation singlet case. This was illustrated in an earlier paper 
(John and Williams 1966), where the trial function 

(42) 

applied in the Kohn, Hulthen 1 and Hulthen 2 methods gave the values A: = -24. 
- 1.7 (or - 16.6), 4.6 respectively. The results in tables 4 and 5 are in very much better 
agreement with the numerical value of -8.10 obtained by Seaton (1957). 

J +'(r)  = r+A,+'(I  -e-2r) 

6. Conclusions 

The method presented here together with the simple applications have shown it to be 
both useful and accurate. The iteration procedure used to calculate type 2 functions can 
involve considerable computations. Here, we have confined ourselves to very simple 
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Table 5. Electron-hydrogen scattering lengths 

Approximation Central field Exchange Exchange 
singlet case triplet case 

~~ 

Trial Number of Method 
function parameters 

Numerical 

Hulthen 1 
Hulthen 2 
Schwinger 

Kohn 
Type 1: Two Hulthen 1 

Hulthen 2 
Method 15 
Method 25 

Type l t  One Kohn 
9 4 5  
943 
9.43 
9 4 3  
9.43 

- 8.10 - 2.35 
- 8.59 
- 8.53 
- 8.68 
- 8.03 -2.35 

- 8.1 1 - 2.35 
-8.10 - 2.35 
-8.11 -2.35 
complex -2.35 
complex - 2.35 

- 

- 

- 

qyx) = X + C 1 X 2 .  

$f#l(x) = C l X + C , X ~ .  

5 These methods are described by John (1967). 

functions so that the integrals can be worked out analytically. In cases when this is not 
possible then numerical techniques can be adopted. However, this can involve as much 
work as the numerical solution of the original Schrodinger equation, particularly when 
a large number of iterations are needed. Type 1 trial functions seem to have some 
advantage from the computational standpoint over type 2 functions, as it is easier to 
introduce an extra parameter in the trial function than an extra iteration, when improved 
accuracy is required. 
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